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Analysis of Metallic Waveguides with Rectangular

Boundaries by Using the Finite-Difference

Method and the Simultaneous Iteration

with the Chebyshev Acceleration
Jenn-Ming Guan and Ching-Chuan Su, Member, IEEE

Abstract—A numerical procedure based on the finite-difference
method and simultaneous iteration of the power method in

conjunction with the Chebyshev acceleration technique is utilized
to analyze the metallic waveguides. Due to the efficiency of the
present sparse matrix eigenproblem solver, lots of unknowns can

be used in the domains of the waveguide cross-sections. Therefore,
accurate cutoff wavenumbers or frequencies can be obtained by

using the simple finite-difference method for the commonly used

metallic waveguides such as the L-shaped, single-ridged, double-
ridged, and rectangular coaxial waveguides. Some discrepancies

with the numerical results in the recent literature are found and
detailed discussions are provided to verify the correctness of the
present results.

I. INTRODUCTION

T HE rectangular hollow metallic waveguide and many of

its variations, such as the ridged waveguides [1], [2] for

wider bandwidth operations are commonly used in microwave

systems. More recently, the square corner cut rectangular

waveguide (SCCRW), which is a special case of the L-shaped

waveguides, is used by Liang et al. for the construction of the

dual-mode filters for satellite communication [3]. The four-

pole elliptic bandpass filter, which was realized at C-band,

is composed of two sections of shorted SCCRW’s coupled

by one evanescent rectangular waveguide. The merit is that

the SCCRW filter can be designed without any tuning mech-

anism. On the other hand, the rectangular coaxial waveguide

constructed by a conducting strip shielded with metallic walls

is also used as a transmission line [4], [5] or as a TEM cell [6]

for electromagnetic compatibility. Recently, a linearly tapered

TEM cell by the name of the GTEM cell is proposed by Leo

et al. [7]. For the investigations of propagation characteristics

along the GTEM cell [7] and scattering analysis when objects

appear in the cells. the complete set of the waveguide modes
of TEM cell (i.e., local waveguide modes of GTEM cell) are

needed by the approaches using the eigenfunction expansions.

Most research on the related topics has been performed and

collected in an early publication [8]. More recently, researches

using the surface integral equation methods [9]–[ 12], the finite-

element methods [ 13]–[ 16], and the finite-difference method
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[17] can be found. In the methods using the surface integral

equation, the Galerkin procedure and the dyadic Green’s

function for the two-dimensional circular or rectangular cavity

resonator are used in [9], [10]. While, the free-space Green’s

function and the method of moments with different expansion

and testing functions are employed via the electric field [11]

or magnetic field [12] formulation. The matrix dimension of

the former formulation is less than that of the latter. How-

ever, the Green’s function of the former is more complicated

than that of the latter. As to the finite-element method, the

Hermitian element with mesh refinement in the vicinity of

the sharp metal edge [13] or the singular element at the

sharp edge [14] has been applied via a formulation based on

one longitudinal field component (Il. or II=). On the other

hand, the full 11 formulation is employed with the singular

testing function [15] or the edge element [16] to treat the

singularity of transverse fields at the sharp edge. The finite-

element methods result in large and sparse matrix eigenvalue

problems. In order to find the dominant eigenpairs accurately

and efficiently, specific algorithms are needed as those have

been employed in the finite-difference method discussed in

the following.

The finite-difference methods have been utilized to treat the

metallic waveguides by Beaubien and Wexler [18] and Sarkar

et al. [17] with the corresponding matrix eigenproblems being

solved by the successive over-relaxation (SOR) and conjugate

gradient methods (CGM), respectively. With the criterion of

high accuracy, large number of unknowns should be used

to discretize the waveguide cross-section. However, due to

the possible limited efficiency of the two above-mentioned

algorithms for matrix eigenvalue problems, the reported re-

sults may not be accurate enough without using much finer
grids. In this investigation, we employ the more efficient

simultaneous iteration of the power method in conjunction

with the Chebyshev acceleration technique to solve the large

and sparse matrix eigenproblems resulting from applying the

finite-difference method to the governing equations of metallic

waveguides. The same approach has been successfully applied

to the problem of dielectric-loaded cavities [19], [20]. In this

investigation, we apply this method to the metallic waveguides

problem. In Section II, this method is briefly described. In

Section III, the numerical results are compared to the published

0018–9480/95$04.00 @ 1995 IEEE
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It is well known that the propagation characteristics of

the metallic waveguides with homogeneous permittivity and

permeability distributions can be fully determined by the

longitudinal component of electric or magnetic field V as

(-82 &

(9X2 +@ + rL2)V(%, y) = o, (1)

where kC is the cutoff wavenumbers. The corresponding

boundary conditions are the Dirichlet ancl Neumann conditions

at metallic boundary for the guiding TM and TE modes,

respectively. By the symmetry of structures, only one half

(Fig. l(b) and (d)) or one quarter (Fig. l(c) and (d) with b = d)

of the cross-section should be considered for some waveguides

with the PEC or PMC (perfect magnetic conductor) conditions

in the symmetry planes. By the use of the equally spaced five-

point finite-difference formula, (1) becomes the simultaneous

algebraic equations

wi+l,j+vi_l,j+v2, j+l+w2,j-1–4vij = –(kcA)zIui’j, (2)

Fig. 1. Cross-sections of (a) L-shaped, (b) single-ridged, (c) double-ridged, where Vii = V (zA, jA) for all the interior node points and
and (d) rectangular coaxial waveguides.

4A+
PEC or PMC

Fig. 2. Finite-difference mid and the normal direction at the nonconvex
co~ductor edge. ● ● ● : int&ior node points; x x x: boundary node points

data in the literature to show the efficiency and accuracy of

the present approach.

II. FORMULATION AND ALGORITHM

The cross-sections of various metallic waveguides to be

analyzed are shown in Fig. 1(a)–(d) for the L-shaped, single-

ridged, double-ridged, and rectangular coaxial waveguides,

respectively. The metallic outer or inner boundaries of the

waveguides are assumed to be perfect electric conductors

(PEC) and a strip conductor of zero thickness is assumed in

the rectangular coaxial waveguide. At the nonconvex corner

edges, a curvature of electrically small radius is defined there

as done for the dielectric edge [20]. Hence, as shown in Fig. 2,

the normal directions at these edge points are the vectors that

bisect the angles between the two metallic walls [15].

A is the-size of the square meshes in the finite~difference

grid as shown in Fig. 2. It is noted that the equally-spaced

grid points coincide with the metallic boundaries. In (2), the

nodal fields at the metallic walls and symmetry planes are

either zero or evaluated in terms of neighboring nodal fields

via the Neumann condition for which the three-point forward

or backward difference is used.

A standard eigenvalue problem Ax = Ax is obtained from

(2) with eigenvalue J = – (kCA)2. The real matrix A is

symmetric only when all the boundaries of considered region

have the Dirichlet condition. The eigenv,alues of matrix A are

located between –8 and zero from Gerschgorin’s theorem.

The desired eigenvalues are the least-magnitude ones that

correspond to the cutoff wavenumbers of the dominant modes

of waveguides by the relation k. = ~/A . When finer grids

are used for high accuracy, the dimension of matrix A will

become very large and the eigenvalues will closely cluster. As

a result, the Chebyshev acceleration technique is needed to

accelerate the convergence rate of the simultaneous iteration

of the power method for obtaining the eigenpairs of matrix A

corresponding to dominant modes.

The simultaneous iteration with the Chebyshev acceleration

(SIC) is fully discussed in [20] and [21]. The method is briefly

described here. For obtaining q desired eigenpairs of matrix A

of order ill with p (> q) iteration vectors and preconditioning

by the Chebyshev polynomial of degree n denoted by Tm (z),

matrix A is scaled to matrix B as

2
B=—

{
A–

c1 + C2 1—I ,
C2 — c1 2

(3)

where c1 = – 8; C2 is a small negative number that corresponds

to the maximum cutoff wavenumber that can be calculated;

and I is a unity matrix of order M. Thereafter, the numerical

procedures consist of the following six steps:
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1)

2)

3)

4)

5)

6)

Start with p linearly independent vectors

Xo = [xl,.. .,xP];

Compute matrix-vector multiplications

Tn(B)X~; k=o,l,2,...

Find p x p matrices C~ and A~ (= diag[m, 72, ” “ , VP])
corresponding to the eigenpairs of the transformed prob-

lem

(XkTTm(B)X~)C~ = (XkTXk)CkAk; (4)

Form new vectors : X~+l = (T. (B)Xk) C~ and nor-

malize each vector of X~+l

Take Rayleigh quotients to obtain eigenvalues ~~ of

matrix A

A, = (x, >Ax,)
(x,, X,) ;

i=l,2, . . ..q (5)

Make convergence test and go to step 2 if not converged.

Most of the computation time k to evaluate the matrix-

vector multiplications in step 2. The number of multiplication

operation for two real-typed variables is 2 x n xp x M for step

2 in each cycle.

III. NUMERICAL RESULTS

The metallic waveguides with rectangular boufidaries shown

in Fig. 1 are analyzed in the following subsections with

the examples investigated in the recent literature. The cutoff

wavenumbers or frequencies and eigenfield distributions of the

TE or TM modes are presented in the corresponding tables and
figures. In treating the TE modes of the L-shaped waveguide

and the rectangular coaxial waveguide with off-centered strip

(Table V) or the symmetric TE modes of the single-ridged

waveguide, there is a null mode with the eigenvalue being

equal to zero and all the components of the corresponding

eigenvector being equal to one constant due to the Neumann

conditions in all the boundaries. This null mode appears first

in applying the finite-difference method and simultaneous

iteration with the Chebyshev acceleration (FD-SIC). However,

this null mode does not exist physically and is removed from

the corresponding tables.

A. Double-ridged Wavegaide

The first example that will be analyzed is the double-ridged

waveguide depicted in Fig. 1(c) with a = 1.27 cm, b = 1.016

cm, c = 0.508 cm, and d = 0.3683 cm, which has been

analyzed by other approaches [1], [2], [13], [14], [16]. By

utilizing symmetry in the z and g directions, two grids of 50

by 40 and 100 by 80 are used to fit the metallic boundaries

exactly for one quarter of the waveguide cross-section. The

calculated cutoff wavenumbers for the g-antisymmetric (odd

function of g) TE modes are shown in Table I together with

the results by other approaches. It is noted that the symmetry

type is referred to field HZ for TE modes and to field E, for

TM modes through this investigation. The TEIOH, TE20T, and

TABLE I

COMPARISONOF THE CUTOFFWAVENUMBERS kc [RAD/CMJ

FORTHE DOUBLE-RIDGED WAVEGUIDE ( a”= 1.27
CM b = 1.016 CM. C = 0.508 CM, d = 0.3683 CM )

Mode TE,nH TIL”T TEmT TEwH TE, IT

FD-SIC .50x40 1.428 3169 6.192 6.69.5 6.976

FD-SIC -1 OOX8O 1.434 3,168 6.19’2 6.705 6..97.5

hlontgomery [1] 1.4:37 3.166 6.190 6.712 6.97.3

(Ttsllmi ~2] 1.438 3.1.5.5 6.215 6.70’i 6.971

scalar–FEM [1:3] l,MO –- 6.1!32 6.713 --

slng,ular-FEM [14] 1,439 — 6.193 6.714

vector-FEM [16] 1.137 6,19? 6.7’21

TE30H modes are the first three x-symmetric (even function

of x ) modes, while the TEIOT and TE1lT modes are the

first two z-antisymmetric modes. It is seen that our FD-SIC

results for both grids are in good agreement with those in the

literature except for the TEIOH mode with the 50 by 40 grid.

Because the lower-order modes are much more dominant at

the conductor edge, dense grids should be used in the vicinity

of the edge for the TEIOH mode as shown by the result of

the 100 by 80 grid. The required number of iterations, for

example, for the first three x-symmetric modes to converge to

the fourth decimal is about 800 for the 100 by 80 grid with
p = q = s, ~~= 50, and C2 = –1.1 x 10–3, which corresponds

to the upper limit of the calculated cutoff wavenumber being

10 rad/cm. The corresponding computation time is about 3

min on a 486DX-33 personal computer with the compiler of

the Microsoft Fortran Powerstation.

B. L-shaped and Single-ridged Waveguides

The next examples are the L-shaped waveguide with a =

b = 1.27 cm and c = d = af2, depicted in Fig. l(a), and

the single-ridged waveguide with a = 1.0 cm, b = 0.5 cm,

and c = d = 0.25 cm, depicted in Fig. l(b). By the use

of symmetry of the single-ridged waveguide, only one half

of the domain is considered and the eigenproblems for the

antisymmetric (A) TM modes and symmetric (S) TE modes

are equivalent to those of the L-shaped waveguide for the TM

and TE modes, respectively. The associated eigenvalues are

identical with the same discretization in the considered domain

of the waveguide cross-sections, and the corresponding cutoff

wavenumbers can be obtained by scaling the dimensions of

the structures. That is, the cutoff wavenumbers are inversely

proportional to the dimension b, c, or d of the considered L-
shaped and single-ridged waveguides for the corresponding

modes. A 50 by 50 grid is used to calculate a few dominant

cutoff wavenumbers of the TM and TE modes for the two

waveguides. The numerical results are shown in Tables II and

III for the L-shaped and single-ridged waveguides, respec-

tively. The mode designation used in this investigation for

the L-shaped and single-ridged waveguides is that the TE and

TM modes are followed by an integer subscript in ascending

order of the cutoff wavenumbers. The degenerate modes are

also counted. Also shown in the Tables are the results of the

surface integral equation (SIE) method [11] and the finite-

difference with conjugate gradient method (FD-CGM) [17] by
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TABLE II

COMPARISONOF THE CUTOWwAVEMBERS kc(WD/CM) FORTHE L-SHAPED wAmGUDE. (a = b= 1.27 cM, c= d= a/2)

Present Analytic

Mode SIE [11] FD-C!t2M [17] FD-SIC Solution

TMI 4.8677 4.80 4.8949

TM2 6.1361 6.07 6.1350

‘rM3 6.9908 6.92 6.9921 6.9967
TM, 8..552.5 8.61 8..5458
TM~ — 9.72 8.8940
TMG — 11.39 10.1262
TMT 10.5318
TMg — 11.0380 11.0627
TiV9 -– 11.0380 11.0627
TMIO — 11.8407

‘l’El 1.8917 1.88t 1.9111

TE, 2.9159 2.951 2.9600

TE3 4.8755 4,89t 4.94!52 4.9474
TEJ — 4.9452 4.9474

TE, ,5,2463 5.26t 5.3128

TE6 — 5.49t 5.5799

TE7 –- 6.911 6.9937 6.9967
T E, 7.2784
TEq 7.6002

Differences between FD-SIC and

SIE FD-CGM Analytic

0.56 %
0.02 %
0.02 %
0.08 %

1.02 %

1.51 %

1.43 %

1.27 %
—

1.98 %
1.07 %
1.04 %
0.75 %
9.28 %

12.48 %

1.65 %

0.34 %

1.13 %

1.00 %

1.64 %

1.21 %

—

—

0.07 %
—

0.22 %
0.22 %

—

—

0.04 %
0.04 %

—

0.04 %
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converting their dimensionless or normalized quantities. It is

noted that the cutoff wavenumbers of the TE modes by the

FD-CGM in Table II are indicated for dimensionless a = 1.3

[Table 8, 17]. However, the result for TEI mode in [17] is

compared by the same group of researchers to those by the SIE

method for dimensionless a = 1.27 [11]. Hence, these data are

assumed for a = 1.27 cm in this investigation; otherwise, the

discrepancies are severer.

From Tables II and III it is seen that for some modes the

results by the SIE are very close to the present solutions but

for the other modes discrepancies of 1 to 2 % are found. As to

the FD-CGM, most of their results are smaller than our results

and the discrepancies between the two methods are about

1%-2%. However, there are some significant discrepancies

between the FD-CGM results and the present solutions. First,

the calculated cutoff wavenumbers of TM5 and TM6 modes of

the L-shaped waveguide by the FD-CGM are not close to any

of our results for the modes from TM5 to TM1o. Secondly,

the cutoff wavenumber of ‘rMG mode of the single-ridged

waveguide does not appear by the FD-CGM.

By using the corresponding equivalence of eigenvalue prob-

lems between the L-shaped and the single-ridged waveguides,

the cutoff wavenumber for the TMG mode of the single-ridged

waveguide should be 17.58 (6.92 x 1.27/0.5) rad/cm by the

FD-CGM result for the TM3 mode of the L-shaped waveguide.

Hence, it is evident that the TM6 mode in Table III is lost in

the FD-CGM computation for the single-ridged waveguide. In

addition, one may check the consistency between the results

of the two waveguides by the individual method. It is found

that there exists inconsistency of 2–390 for the TE modes in

the solutions by the SIE method (the TEI and TE2 modes of

the L-shaped waveguide versus the TE2 and TE4 modes of

the single-ridged waveguide, respectively). Furthermore, it is

examined by the present approach that the cutoff wavenumbers

(i.e. eigenvalues) of the TM8 ancl TE3 modes of the L-shaped

waveguide, and hence the TE(j mode of the single-ridged

waveguide are with double degeneracy as shown in Tables II

and III. However, these phenomena were not mentioned in the

previous publications [1 1], [17]. Evidence of the degeneracy

is provided in the following paragraph.

The L-shaped waveguide considered in this investigation

occupies the space of three quarters of the square waveguide of

width a. By the symmetry of the extended square waveguide,

the PEC or PMC condition can be imposed at the two middle

section planes, which coincide with part of the boundary of

the L-shaped waveguide considered in this investigation, to

obtain the guided modes of the square waveguide. Thus, the

L-shaped waveguide considered in this investigation has the

modes corresponding to those of the extended waveguide with

the PEC condition at the two middle section planes of the ex-

tended waveguide. The eigenfield distributions of the L-shaped

waveguide for field 17z of some TM modes and field Hz of

some TE modes are illustrated in Figs. 3 and 4, respectively.

As seen quantitatively from the computed cutoff wavenumbers

and qualitatively from the eigenfields, the TM3, (TM8, TMg),

(TE3, TEA), and TE7 modes are corresponding to the TM22,

(TM24, TM42), (TE02, TE20 ), and TE22 modes, respectively,

of the extended waveguide, where the parenthesized modes

are degenerate. Note that integer superscripts are employed

for the commonly used mode designation of the rectangular

waveguide in this investigation to avoid confusion with the

present mode designation. Therefore, exact analytic solutions

exist for these modes and the rellative differences between our

results and these analytic answers are shown in Table II to
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TABLE III

COMPARISONOF THE CUTOFF WAVENUMBERSkC [RADICMI FORTHE SINGLE-RIDGED WAVEGUIDE (a = 1.0 crvr, b=O.5 CM, c= 14=0.2LcMJ

Present Difference Difference

Mode Type SIE[ll] FD-C!GM [l?] FD-SIC (FD-SIC&SIE) (FD-SIC& [l?])

TM,
TMZ
TM3
TM,
TM5
TM6
TM,
TM8

TM,

(a)

TM*

s

A

s

A
s
A
s
A

.4
s
A
s
A
s
s
A
A

12.0381

12.2938

13.9964
15..5871

~,~496

4.9436

6.5189

7..5642

12.05
]~.3~

13.86
1.5.34
16.28

19.32

2.23

4.78

6.40

7.48

9.71

12.39

12.1447
12.4:3:31
14.0037
1.5..5829
16.6403
17.7598
19.6296
21.7063

~,2422

4.8543

6.4476

7.518.5

9.8314

12.5607

12.,5607

12.7667

13.3825

0.90 %

1.16 ‘%
0.03 %
0.06 %

0.33 %
1.81 Yo

1.09 %
0.60 !7

TE3

0.79 x,

0.92 %

1.04 %
1.58 %
a,gl %

1.60 Y

0..5.5%
1..5.5%
0.74 %
0.51 %
1.25 %
1.38 %

Y 0“0 ~ Y o-o ~

(a) (b)

TE7 TE8

(c) (d)

Fig.3. Field E, distributions of the (a) TM1. (b) TMs, (c) TMs, and(d)
TE9 modes forthe L-shaped w~veguide considered in Table II.

demonstrate theaccuracy of thepresent FD-SIC method. The

calculated field distributions of the two degenerate TM8 and

TM9 modes shown in Fig. 3(c) and (d) are two different linear

combinations of the eigenfields of the two degenerate TMZ4

and TM42 modes of the extended square waveguide. The same

situation holds for the dual TE3 and TEA modes corresponding

to the TE02 and TE20 modes as shown in Fig. 4(a) and (b).

C. Rectangular Coaxial Waveguides

The rectangular coaxial waveguides or the shielded

striplines considered are the two examples analyzed in [7]

Y 0“0 ~ Y 0--0 ~

(c) (d)

Fig. 4. Field H, distributions of the (a) TE3, (b) TE4, (c) TE7, and (d) TE8

modes for the L-shaped waveguide considered m Table II.

for the GTEM cells by the transverse resonance diffraction

(TRD) method. The first example bears symmetry in both z

and y directions with a = 6 m, b = d = 3 m, and w = 5 m.

The second example bears symmetry only in ~ direction with

a=6m, b=lm, d=3m, and w=5m.0nly the results

of the TE modes are presented in [7] and this investigation.

Furthermore. the y-symmetric modes of the first shielded

stripline that can be solved analytically are also excluded

from [7] and this investigation. To avoid the field allocation

at the edge point of the strip, a 123 by 123 grid and a 123

by 164 grid are used for one quarter of the cross-section of

the first stripline and for one half of the cross-section of the
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TABLE IV

COMPANION OF THE CUTOFFFREQUENCES (MHZ) FORTHE FIRST

WANTISYMMETNC SEVENTEENDOMINANT TE MODES OF THE RECTANGULAR
COAXIAL WAVEGUIDE(a=6M, b=d =3 M,w=5M)

Present Difference

Mode Type TRD [7] FDM (FDM & TRD)

s
A
s
s
A
A
s
A
s
s
A
s
A
s
A
A
s

14.270

31.i319

57.374

64.089

79.451

94.55?3

103.4.53

111.480

12.5.244

130.39.5

139.974

14-!.1.52

14.203

31.786

50.016

.57.351

64.032

78.171

79.399

94.60.5

100.122

103.486

111.399

111.930

125.117

125.175

130.412

140.039

144.222

0.47 %

0.10 %

0.04 %

0.09 %

0.07 %

0.05 %’

0.03 %

0.07 %

0.06 %

0.01 %
0.05 %

0.05 %

second stripline in the right-hand side, respectively. It is noted

that the field Il. is discontinuous at the infinitely thin strip

in general. That is, the fields IIz (x, y = d+) on the upper

side of the strip may be different from those H. (z, y = d– )

on the lower side. Therefore, the fields Ifz (z, y = d+) and,,,!
Hz (z, y = d-) for o < x < : are evaluated with the

?forward and backward difference ormulas, respectively, via

the Neumann condition in the computation for the second

stripline. In addition, the second partial derivative ~2 /~Z2 for

the point just to the right of the strip edge is substituted by

the three-point forward difference formula.

The calculated results are shown in Tables IV and V for the

first and second shielded striplines, respectively. The mode

designation is the same as that for the L-shaped and single-

ridged waveguides. Hence, the y-symmetric modes of the first

stripline are also counted although they are not shown in Table

IV. Also shown in the Tables are the results by the TRD

method and their differences with the present approach. It is

seen that these two results are in good agreement, especially

for the high-order modes. However, our results contain some

modes that did not appear in [7]. In what follows, we show

that at least parts of them are indeed physical modes.

In Table IV there are five modes not appearing in [7]: the

TE6, TE12, TE18, TE24, and TE27 modes. It is interesting to

note that the cutoff frequencies of the y-antisymmetric TEG,

TEls, TE24, and TE27 modes in Table IV are very close to

those of the y-symmetric and degenerate (TE4, TE5), (TEIG,

TE17), (TEzz, TEz3), and (TEz5, TEZG) modes, respectively.
These four pair of dual y-symmetric modes are equivalent

to the (TE02, TE20), (TE04, TE40), (TE24, TE42), and (TE34,

TE50) modes, respectively, of the hollow square waveguide

having the same dimension as the shielded stripline without the

strip [22]. Hence, the cutoff frequencies of these dual modes

we 50, 100, 111.803, and 125 MHz, respectively. The reason

that the cutoff frequencies of these four y-antisymmetric

modes are close to the corresponding dual modes can be ex-

plained by observing the eigenfield distributions. For example,

the eigenfield ~z distributions of the TEm, TE23, and TEM

modes are shown in Figs. 5(a)–(c) for one quarter of the cross-

section of the first stripline. By the linear combinations of the

fields of Figs. 5(a) and 5(b) as

the resulting fields shown in Fig. 5(d) are very close to the

fields of the TE24 mode except the regions near the strip edge.

The boundary conditions of the (TE24, TE42) modes and those

of the TE24 mode are identical except that from z = 2.5 m

to z = 3 m (y = O) where the Dirichlet condition is imposed

for the TE24 mode. It is seen from Fig. 5(d) that the fields are

approaching to zero (the Dirichlet condition) from z = 2.5 m

to x = 3 m (g = O). Thus, the acttud fields of the TE24

mode are slightly perturbed from the fields of Fig. 5(d) in

the vicinity of the strip edge. Owing to the similarity in field

distributions, it can be expected that the cutoff frequency of

the TE24 mode is close to that of the dual (TE22, TE23) modes.

The same situations hold for the TE6, TE18, and TE27 modes

corresponding to the (TE02, TE20), (TE04, TE40), and (TE34,

TE50) modes, respectively. The field H. distributions of the

TE6, TElg, and TE27 modes shown in Fig.

those of

_:(cos :y + Cos ;$),

;(COS :y - Cos :$),
and

6(a)–(c) resemble

(6b)

(6c)

(6d)

respectively. The eigenfield of the remaining TE12 mode not

appearing in [7] is shown in Fig. 6(d).

As to the second shielded stripline, there are ten modes

that do not appear in [7] compared to the present FD-SIC

results shown in Table V. If the electric field of a mode

in a rectangular waveguide is only in the y direction, the

presence of an infinitely thin conducting strip will have no

effect on that mode. Thus, the TEIO, TE20, TE30, TE40, and

TE50 modes of the hollow rectangular waveguide having the

same dimension as the shielded stripline without the strip

are also modes of the shielded stripline. According to the

calculated cutoff frequencies and eigenfields, partly shown in

Fig. 7 for one half of the cross-section of the second stripline,

the TEz, TE4, TEs, TEM, and TEM modes, among the just-
mentioned 10 modes missing in [7], correspond to the above

five rectangular waveguide modles, respectively. The fields on
the lower and upper sides of the strip are discontinuous in

general. Thus, the location of the strip can be inferred from

the discontinuity if it exists in Fig. 7. However, the fields

on the strip are continuous for the just-mentioned five modes

having the analytic solutions. The numerical deviations from

the continuity of fields on the strip are more obvious in the
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TABLE V

COMPARISONOF THE CUTOFF FREQOENCLES(MHZ) FORTHE FIRST TWENTY-TWO DOMINANTTE
MODES OF THE RECTANGULAR COAXIAL WAVEGUIDE. ( a = 6 Mb = 1 ~,d = 3 M,UI = 5 M )

TE[

TE2

T G
TE4

TE5
TEb
TET
TEB
TE9
TE,O
TE,,
TEI,
TE,2
‘rEli
TE15
ml,;
TE17
TE18
TE19
T Ezo
TE21
TE2,

—

TE22

s
A
A
s

s
s
A
A
s
A
A
s
s
s
A
s
s
A
A
A
A
s

TRD [7]

19.980

38.611

60.86.5
61.069

77.215
81.63S
93.!225

104.6.58
107.864

119..582

1~9,5~1

142.286

TE21

Present Analytic Difference Difference

FDM Solution (FDM&TRD) (FDM&Analvtic)

19.s87

25.000

38..530

49.999

50.013

60.822

61.027
74.996
77.1!51
81.646
93.956
99.991

100113
104.704
107.s22
111.S61
119.576
124.981
125.140
129.58:3
1:36.650
142.:368

(a)

TE24

(b)

0.47 %
2.5

0,21 ~

50

0.07 %
0.07 %

75
0.08 %
0.01 %
0.03 %

100 —
—

0.04 ‘z
0.04 %

0.01 %
12.5

0.05 %

0.06 %

0.00 ‘%

0.00 %

—

0.01 %

0.01 %

0.03 %

TE18TE6

1

~
50
2

-1

Y Oox

(a) (b)

TE27 TE,2

(c) (d)

Fig. 5. FieId H.dlstributions of the(a) TEzZ, (b) TEzs, and(c) TEz~modes

for one quarter of the cross-section of the rectangular coaxial waveguide con-

sideredin Table IV, (d)~(.r, y) = ~(cos~z cos~y+cos~z cos~y).

TE4 mode among these modes. The discontinuity errors are

maximum near the center of the strip for the TE4 mode and

are about 1To there.

From the present FD-SIC results, the cutoff frequencies of

the TE5, TE13, and TE19 modes are very close to those of

the TEA, TE12, and TE18 modes, respectively. Hence, it may

(c) (d)

Fig. 6. Field H, distributions of the (a) TE6, (b) TE18, (c) TE27, and (d)
TEIZ modes for one quarter of the cross-section of the rectangular coaxial
wavegmde considered in Table IV.

be difficult to find these nearly degenerate modes by the root-

searching method used in the TRD method [7] if these modes

can be solved by it. However, this situation does not cause any

troubles for the present approach. At last, the field distributions

of If. for the remaining TE16 and TE21 modes not appearing

in [7] are shown in Fig. 7(c) and (h), respectively.
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TE~

1

~
30
?

-1
4

Y Oox

(a)

TE,2

Y 00 ‘x

(c)

TE,6

(d)

TE,*

Y 00 ‘x
(e)

TE,9

1

~
50
2

-1
4

Y Oox

(g)

Y Oo’x

(t)

TE2,

Y 0’0 x

(h)

Fig. 7. Field If, dktributions of the (a) TEA, (b) TE5, (c) TE12, (d) TE13,
(e) TE16, (f) TE18, (g) TE19, and (h) TE21 modes for one half of the

cross-section of the rectangular coaxial waveguide considered in Table V.
The discontinuity is the location of the strip.

IV. CONCLUSION

The cutoff wavenumbers or frequencies of the TE orTM

modes for the L-shaped, single-ridged, double-ridged, and

rectangular coaxial waveguides are investigated in this paper

by using the finite-difference method and the simultaneous

iteration in conjunction with the Chebyshev acceleration tech-

nique. Accurate results are obtained by utilizing dense finite-

difference grids and the efficient SIC algorithm for the sparse

matrix eigenvalue problems. Although the problems of the

metallic waveguides have been investigated for a long time, it

is found that results of some modes in the recent literature are

not satisfactory. Furthermore, it is found that a lot of modes

are missing in recent publications. Detailed discussions and

explanations have been provided to support our results.
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