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Analysis of Metallic Waveguides with Rectangular
Boundaries by Using the Finite-Difference
Method and the Simultaneous Iteration
with the Chebyshev Acceleration

Jenn-Ming Guan and Ching-Chuan Su, Member, IEEE

Abstract—A numerical procedure based on the finite-difference
method and simultaneous iteration of the power method in
conjunction with the Chebyshev acceleration technique is utilized
to analyze the metallic waveguides. Due to the efficiency of the
present sparse matrix eigenproblem solver, lots of unknowns can
be used in the domains of the waveguide cross-sections. Therefore,
accurate cutoff wavenumbers or frequencies can be obtained by
using the simple finite-difference method for the commonly used
metallic waveguides such as the L-shaped, single-ridged, double-
ridged, and rectangular coaxial waveguides. Some discrepancies
with the numerical results in the recent literature are found and
detailed discussions are provided to verify the correctness of the
present results.

1. INTRODUCTION

HE rectangular hollow metallic waveguide and many of

its variations, such as the ridged waveguides [1], [2] for
wider bandwidth operations are commonly used in microwave
systems. More recently, the square corner cut rectangular
waveguide (SCCRW), which is a special case of the L-shaped
waveguides, is used by Liang et al. for the construction of the
dual-mode filters for satellite communication [3]. The four-
pole elliptic bandpass filter, which was realized at C-band,
is composed of two sections of shorted SCCRW'’s coupled
by one evanescent rectangular waveguide. The merit is that
the SCCRW filter can be designed without any tuning mech-
anism. On the other hand, the rectangular coaxial waveguide
constructed by a conducting strip shielded with metallic walls
is also used as a tfransmission line [4], [5] or as a TEM cell [6]
for electromagnetic compatibility. Recently, a linearly tapered
TEM cell by the name of the GTEM cell is proposed by Leo
et al. [7]. For the investigations of propagation characteristics
along the GTEM cell [7] and scattering analysis when objects
appear in the cells. the complete set of the waveguide modes
of TEM cell (i.e., local waveguide modes of GTEM cell) are
needed by the approaches using the eigenfunction expansions.
Most research on the related topics has been performed and
collected in an early publication [§]. More recently, researches
using the surface integral equation methods [9]-{12], the finite-
element methods [13]-[16]., and the finite-difference method
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[17] can be found. In the methods using the surface integral
equation, the Galerkin procedure and the dyadic Green’s
function for the two-dimensional circular or rectangular cavity
resonator are used in [9], [10]. While, the free-space Green’s
function and the method of moments with different expansion
and testing functions are employed via the electric field [11]
or magnetic field [12] formulation. The matrix dimension of
the former formulation is less than that of the latter. How-
ever, the Green’s function of the former is more complicated
than that of the latter. As to the finite-element method, the
Hermitian element with mesh refinement in the vicinity of
the sharp metal edge [13] or the singular element at the
sharp edge [14] has been applied via a formulation based on
one longitudinal field component (£, or H,). On the other
hand, the full H formulation is employed with the singular
testing function [15] or the edge element [16] to treat the
singularity of transverse fields at the sharp edge. The finite-
element methods result in large and sparse matrix eigenvalue
problems. In order to find the dominant eigenpairs accurately
and efficiently, specific algorithms are needed as those have
been employed in the finite-difference method discussed in
the following.

The finite-difference methods have been utilized to treat the
metallic waveguides by Beaubien and Wexler [18] and Sarkar
et al. [17] with the corresponding matrix eigenproblems being
solved by the successive over-relaxation (SOR) and conjugate
gradient methods (CGM), respectively. With the criterion of
high accuracy, large number of unknowns should be used
to discretize the waveguide cross-section. However, due to
the possible limited efficiency of the two above-mentioned
algorithms for matrix eigenvalue problems, the reported re-
sults may not be accurate enough without using much finer
grids. In this investigation, we employ the more efficient
simultaneous iteration of the power method in conjunction
with the Chebyshev acceleration technique to solve the large
and sparse matrix eigenproblems resulting from applying the
finite-difference method to the governing equations of metallic
waveguides. The same approach has been successfully applied
to the problem of dielectric-loaded cavities [19], [20]. In this
investigation, we apply this method to the metallic waveguides
problem. In Section II, this method is briefly described. In
Section II1, the numerical results are compared to the published
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Fig. 1. Croés—sections of (a) L-shaped, (b) single-ridged, (c) double-ridged,
and (d) rectangular coaxial waveguides.
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Fig. 2. Finite-difference grid and the normal direction at the nonconvex
conductor edge. ® o eo: interior node points; X X X: boundary node points

data in the literature to show the efficiency and accuracy of
the present approach.

II. FORMULATION AND ALGORITHM

The cross-sections of various metallic waveguides to be
analyzed are shown in Fig. 1(a)—(d) for the L-shaped, single-
ridged, double-ridged, and rectangular coaxial waveguides,
respectively. The metallic outer or inner boundaries of the
waveguides are assumed to be perfect electric conductors
(PEC) and a strip conductor of zero thickness is assumed in
the rectangular coaxial waveguide. At the nonconvex corner
edges, a curvature of electrically small radius is defined there
as done for the dielectric edge [20]. Hence, as shown in Fig. 2,

- the normal directions at these edge points are the vectors that
bisect the angles between the two metallic walls [15].

It is well known that the propagation characteristics of
the metallic waveguides with homogeneous permittivity and
permeability distributions can be fully determined by the
longitudinal component of electric or magnetic field ¥ as

0? 0?
<___ + ==+ kc2>qj(x7 y) = 07 (1)
€ Y

where k. is the cutoff wavenumbers. The corresponding
boundary conditions are the Dirichlet and Neumann conditions
at metallic boundary for the guiding TM and TE modes,
respectively. By the symmetry of structures, only one half
(Fig. 1(b) and (d)) or one quarter (Fig. 1(c) and (d) with b = d)
of the cross-section should be considered for some waveguides
with the PEC or PMC (perfect magnetic conductor) conditions
in the symmetry planes. By the use of the equally spaced five-
point finite-difference formula, (1) becomes the simultaneous
algebraic equations

Vi1 i+ W1+ Wi+ W o1 =40 = —(kA)* 05, (2)

where U;; = U(iA, jA) for all the interior node points and
A is the size of the square meshes in the finite-difference
grid as shown in Fig. 2. It is noted that the equally-spaced
grid points coincide with the metallic boundaries. In (2), the
nodal fields at the metallic walls and symmetry planes are
either zero or evaluated in terms of neighboring nodal fields
via the Neumann condition for which the three-point forward
or backward difference is used.

A standard eigenvalue problem Ax = Ax is obtained from
(2) with eigenvalue A = —(k.A)2. The real matrix A is
symmetric only when all the boundaries of considered region
have the Dirichlet condition. The eigenvalues of matrix A are
located between —8 and zero from Gerschgorin’s theorem.
The desired eigenvalues are the least-magnitude ones that
correspond to the cutoff wavenumbers of the dominant modes
of waveguides by the relation k. = \/W /A . When finér grids
are used for high accuracy, the dimension of matrix A will
become very large and the eigenvalues will closely cluster. As
a result, the Chebyshev acceleration technique is needed to
accelerate the convergence rate of the simultaneous iteration
of the power method for obtaining the eigenpairs of matrix A
corresponding to dominant modes.

The simultaneous iteration with the Chebyshev acceleration
(SIC) is fully discussed in [20] and [21]. The method is briefly
described here. For obtaining ¢ desired eigenpairs of matrix A
of order M with p (> ¢) iteration vectors and preconditioning
by the Chebyshev polynomial of degree n denoted by T, (x),
matrix A is scaled to matrix B as

B-_ 2 {A—01+CZI}, 3)
Co — C1 2
where ¢; = —8; ¢y is a small negative number that corresponds

to the maximum cutoff wavenumber that can be calculated;
and I is a unity matrix of order M. Thereafter, the numerical
procedures consist of the following six steps:
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1) Start with p linearly independent vectors
Xo = [x1,, %pl;
2) Compute matrix-vector multiplications

T.(B)X,: k=0,1,2,---

3) Find p x p matrices Cy, and Ay, (= diag[vy1, vz, -, 7]
corresponding to the eigenpairs of the transformed prob-
lem

(X TH(B)X1,)Cr = (X5, " X1 )CrAy: 4)

4) Form new vectors : Xyp1 = (T,(B)X,)Cy and nor-
malize each vector of Xjy41

5) Take Rayleigh quotients to obtain eigenvalues A; of
matrix A

Ax, .
Al:%%xi)); Z:1ﬂ23"'sq (5)

6) Make convergence test and go to step 2 if not converged.

Most of the computation time is to evaluate the matrix-
vector multiplications in step 2. The number of muitiplication
operation for two real-typed variables is 2xn xpx M for step
2 in each cycle.

III. NUMERICAL RESULTS

The metallic waveguides with rectangular boundaries shown
in Fig. 1 are analyzed in the following subsections with
the examples investigated in the recent literature. The cutoff
wavenumbers or frequencies and eigenfield distributions of the
TE or TM modes are presented in the corresponding tables and
figures. In treating the TE modes of the L.-shaped waveguide
and the rectangular coaxial waveguide with off-centered strip
(Table V) or the symmetric TE modes of the single-ridged
waveguide, there is a null mode with the eigenvalue being
equal to zero and all the components of the corresponding
eigenvector being equal to one constant due to the Neumann
conditions in all the boundaries. This null mode appears first
in applying the finite-difference method and simultancous
iteration with the Chebyshev acceleration (FD-SIC). However,
this null mode does not exist physically and is removed from
the corresponding tables.

A. Double-ridged Waveguide

The first example that will be analyzed is the double-ridged
waveguide depicted in Fig. 1(c) with ¢ = 1.27 cm, b = 1.016
cm, ¢ = 0.508 cm, and d = 0.3683 cm, which has been
analyzed by other approaches [1], [2], [13], [14], [16]. By
utilizing symmetry in the z and y directions, two grids of 50
by 40 and 100 by 80 are used to fit the metallic boundaries
exactly for one quarter of the waveguide cross-section. The
calculated cutoff wavenumbers for the y-antisymmetric (odd
function of y) TE modes are shown in Table I together with
the results by other approaches. It is noted that the symmetry
type is referred to field H, for TE modes and to field E, for
TM modes through this investigation. The TE1oH, TE2(T, and

TABLE 1
COMPARISON OF THE CUTOFF WAVENUMBERS k¢ (RAD/CM)
FOR THE DOUBLE-RIDGED WAVEGUIDE ( ¢ ‘= 1.27
cM b = 1.016 cm, ¢ = 0.508 cm, 4 = 0.3683 cM )

Mode TE]OH TEloT TE;()T TEgUH TEMT
FD-SIC -- 50x40  1.428 3169 6.192 6.695 6.976
FD-SIC -100x80  1.434 3.168 6.192 6.705 6.975

Montgomery [1] 1.437  3.166  6.190 6.712  6.973
Utsumi [2]  1.438 3.155 6.215 6.707 6.971
scalar-FEM [13] 1.140 ~ 6.192 6.713 -
smgulac-FEM [14] 1439  —  6.193 6714  —
vector-FEM [16]  1.137 6.197  6.721 —

TE3oH modes are the first three xz-symmetric (even function
of x ) modes, while the TET and TE;; T modes are the
first two z-antisymmetric modes. It is seen that our FD-SIC
results for both grids are in good agreement with those in the
literature except for the TE;oH mode with the 50 by 40 grid.
Because the lower-order modes are much more dominant at
the conductor edge, dense grids should be used in the vicinity
of the edge for the TE;oH mode as shown by the result of
the 100 by 80 grid. The required number of iterations, for
example, for the first three z-symmetric modes to converge to
the fourth decimal is about 800 for the 100 by 80 grid with
p=g¢q=23,n=250,and c; = ~1.1 x 1073, which corresponds
to the upper limit of the calculated cutoff wavenumber being
10 rad/cm. The corresponding computation time is about 3
min on a 486DX-33 personal computer with the compiler of
the Microsoft Fortran Powerstation.

B. L-shaped and Single-ridged Waveguides

The next examples are the L-shaped waveguide with a =
b =127 cm and ¢ = d = a/2, depicted in Fig. 1(a), and
the single-ridged waveguide with ¢ = 1.0 cm, b = 0.5 cm,
and ¢ = d = 0.25 cm, depicted in Fig. 1(b). By the use
of symmetry of the single-ridged waveguide, only one half
of the domain is considered and the eigenproblems for the
antisymmetric (A) TM modes and symmetric (S) TE modes
are equivalent to those of the L-shaped waveguide for the TM
and TE modes, respectively. The associated eigenvalues are
identical with the same discretization in the considered domain
of the waveguide cross-sections. and the corresponding cutoff
wavenumbers can be obtained by scaling the dimensions of
the structures. That is, the cutoff wavenumbers are inversely
proportional to the dimension b, ¢. or d of the considered L-
shaped and single-ridged waveguides for the corresponding
modes. A 50 by 50 grid is used to calculate a few dominant
cutoff wavenumbers of the TM and TE modes for the two
waveguides. The numerical results are shown in Tables II and
III for the L-shaped and single-ridged waveguides, respec-
tively. The mode designation used in this investigation for
the L-shaped and single-ridged waveguides is that the TE and
TM modes are followed by an integer subscript in ascending
order of the cutoff wavenumbers. The degenerate modes are
also counted. Also shown in the Tables are the results of the
surface integral equation (SIE) method [11] and the finite-
difference with conjugate gradient method (FD-CGM) [17] by



GUAN AND SU: ANALYSIS OF METALLIC WAVEGUIDES WITH RECTANGULAR BOUNDARIES

377

TABLE II
COMPARISON OF THE CUTOFF WAVENUMBERS k¢ (RAD/CM) FOR THE L-SHAPED WAVEGUIDE. (¢ = b = 1.27 cM,c = d = af2)

Present Analytic Differences between FD-SIC and

Mode SIE [11] FD-CGM [17] FD-SIC Solution SIE  FD-CGM Analytic
T™,  4.8677 4.80 4.8949 — 0.56 % 1.98 % —
™, 6.1361 6.07 6.1350 — 0.02 % 1.07 % —
TM;  6.9908 6.92 6.9921  6.9967 0.02 % 1.04%  0.07%
TM, 85525 8.61 8.5458 — 0.08 % 0.75 % —
TM, — 9.72 8.8940 — — 9.28 % —
TM, — 11.39 10.1262 — — 12.48 % —
T™;, — — 10.5318 — — — —
TM; — 11.0380  11.0627 - — 0.22 %
TM, _ 11.0380  11.0627 — — 0.22 %
™, — — — 11.8407 — — — —
TE, 1.8917 881 1.9111 — 1.02 % 1.65 % —
TE, 2.9159 2.951 2.9600 — 151 % 0.34 % —
TE,  4.8755 4.891 49452  4.9474 1.43 % 1.13%  0.04 %
TE, — 49452 4.9474 — — 0.04 %
TEs  5.2463 5261 5.3128 — 1.27 % 1.00 % —
TE, 5.491 5.5799 — — 1.64 % —
TE, - 6.911 6.9937  6.9967 — 121 %  0.04 %
TEs ~ — 7.2784 — — — —
TEq 7.6002 - — — —

converting their dimensionless or normalized quantities. It is
noted that the cutoff wavenumbers of the TE modes by the
FD-CGM in Table II are indicated for dimensionless o = 1.3
[Table 8, 17]. However, the result for TE; mode in [17] is
compared by the same group of researchers to those by the SIE
method for dimensionless a = 1.27 [11]. Hence, these data are
assumed for ¢ = 1.27 cm in this investigation; otherwise, the
discrepancies are severer.

From Tables IT and III it is seen that for some modes the
results by the SIE are very close to the present solutions but
for the other modes discrepancies of 1 to 2 % are found. As to
the FD-CGM, most of their results are smaller than our results
and the discrepancies between the two methods are about
1%-2%. However, there are some significant discrepancies
between the FD-CGM results and the present solutions. First,
the calculated cutoff wavenumbers of TM5 and TMg modes of
the L-shaped waveguide by the FD-CGM are not close to any
of our results for the modes from TMj5 to TM7o. Secondly,
the cutoff wavenumber of TMg mode of the single-ridged
waveguide does not appear by the FD-CGM.

By using the corresponding equivalence of eigenvalue prob-
lems between the L-shaped and the single-ridged waveguides,
the cutoff wavenumber for the TMg mode of the single-ridged
waveguide should be 17.58 (6.92 x 1.27/0.5) rad/cm by the
FD-CGM result for the TM3 mode of the L-shaped waveguide.
Hence, it is evident that the TMg mode in Table III is lost in
the FD-CGM computation for the single-ridged waveguide. In
addition, one may check the consistency between the results
of the two waveguides by the individual method. It is found
that there exists inconsistency of 2-3% for the TE modes in
the solutions by the SIE method (the TE; and TE; modes of
the L-shaped waveguide versus the TE; and TE, modes of

the single-ridged waveguide, respectively). Furthermore, it is
examined by the present approach that the cutoff wavenumbers
(i.e. eigenvalues) of the TMg and TE3 modes of the L-shaped
waveguide, and hence the TEg mode of the single-ridged
waveguide are with double degeneracy as shown in Tables II
and III. However, these phenomena were not mentioned in the
previous publications [11], [17]. Evidence of the degeneracy
is provided in the following paragraph.

The L-shaped waveguide considered in this investigation
occupies the space of three quarters of the square waveguide of
width a. By the symmetry of the extended square waveguide,
the PEC or PMC condition can be imposed at the two middle
section planes, which coincide with part of the boundary of
the L-shaped waveguide consideréd in this investigation, to
obtain the guided modes of the square waveguide. Thus, the
L-shaped waveguide considered in this investigation has the
modes corresponding to those of the extended waveguide with
the PEC condition at the two middle section planes of the ex-
tended waveguide. The eigenfield distributions of the L-shaped
waveguide for field E, of some TM modes and field H, of
some TE modes are illustrated in Figs. 3 and 4, respectively.
As seen quantitatively from the computed cutoff wavenumbers
and qualitatively from the eigenfields, the TMj3, (TMs, TMy),
(TE3, TEy), and TE; modes are corresponding to the TM??,
(TM24, TM*?), (TE®2, TE2? ), and TE?? modes, respectively,
of the extended waveguide, where the parenthesized modes
are degenerate. Note that integer superscripts are employed
for the commonly used mode designation of the rectangular
waveguide in this investigation to avoid confusion with the
present mode designation. Therefore, exact analytic solutions
exist for these modes and the relative differences between our
results and these analytic answers are shown in Table II to
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TABLE III
COMPARISON OF THE CUTOFR WAVENUMBERS k¢ (RAD/CM) FOR THE SINGLE-RIDGED WAVEGUIDE (a = 1.0 oM, b = 0.5 cM,c = d = 0.25 vy
Present Difference Difference

Mode Type SIE[11] FD-CGM [t7] FD-SIC (FD-SIC & SIE) (FD-SIC & [17])
TM; S 12.0381 12.05 12.1447 0.90 % 0.79 %
TM, A 12.2933 12.32 12.4331 1.16 % 0.92 %
TM; S 13.9964 13.86 14.0037 0.03 % 1.04 %
TM™M, A 15.5871 15.34 15.5829 0.06 % 1.58 %
TM; S — 16.28 16.6403 — 221 %
TMs A — — 17.7598 — -—

TM; S — 19.32 19.6296 — 1.60 %
TMg A — — 21.7063 — —

TE, A 2.2496 2.23 2.2422 0.33 % 0.55 %
TE; S 1.9436 4.78 4.8543 1.81 % 1.55 %
TE; A 6.5189 6.40 6.4476 1.09 % 0.74 %
TE, S 7.5642 7.48 7.5185 0.60 % 051 %
TE; A — 9.71 9.8314 — 1.25 %
TE, S — 12.39 12.5607 — 1.38 %
TE~, S — — 12.5607 — —

TEs A — — 12.7667 — —

TEq A — — 13.3825 — —
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Fig. 3. Field E, distributions of the (a) TMy. (b) TMa. (¢) TMs, and (d)

TEq modes for the L-shaped waveguide considered in Table II.

demonstrate the accuracy of the present FD-SIC method. The
calculated field distributions of the two degenerate TMg and
TMg modes shown in Fig. 3(c) and (d) are two different linear
combinations of the eigenfields of the two degenerate TM?*
and TM*? modes of the extended square waveguide. The same
situation holds for the dual TE; and TE4 modes corresponding
to the TE?? and TE?® modes as shown in Fig. 4(a) and (b).

C. Rectangular Coaxial Waveguides

The rectangular coaxial waveguides or the shielded
striplines considered are the two examples analyzed in [7]

o
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-

WOV L
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(©

Fig. 4. Field H- distributions of the (a) TEs, (b) TE4, (¢) TE7, and (d) TEg
modes for the L-shaped waveguide considered 1n Table II.

(d)

for the GTEM cells by the transverse resonance diffraction
(TRD) method. The first example bears symmetry in both z
and y directions with e =6 m, b =d =3 m, and w = 5 m.
The second example bears symmetry only in x direction with
a=06m,b=1m,d=3m, and w = 5 m. Only the results
of the TE modes are presented in [7] and this investigation.
Furthermore, the y-symmetric modes of the first shielded
stripline that can be solved analytically are also excluded
from [7] and this investigation. To avoid the field allocation
at the edge point of the strip, a 123 by 123 grid and a 123
by 164 grid are used for one quarter of the cross-section of
the first stripline and for one half of the cross-section of the
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TABLE IV
COMPARISON OF THE CUTOFF FREQUENCIES (MHZ) FOR THE FIRST
y-ANTISYMMETRIC SEVENTEEN DOMINANT TE MODES OF THE RECTANGULAR
CoAXIAL WAVEGUIDE (a = 6 My b=d =3 M, w=5M)

Present Difference

Mode Type TRD [7] FDM (FDM & TRD)
TE; S 14.270 14.203 047 %
TE; A 31.819 31.786 0.10 %
TEe S — 50.016 —
TEsg S 57.374 57.351 0.04 %
TEq A 64.089 64.032 0.09 %
TE; A — 78.171 —
TE13 S 79.451 79.399 0.07 %
TEq5 A 94.558 94.605 0.05 %
TE;s S — 100.122 —
TE S 103.453 103.486 0.03 %
TEy A 111.480 111.399 0.07 %
TE;4 S — 111.930 —
TE,; A — 125.117 —
TEs S 125.244 125.175 0.06 %
TEq A 130.395 130.412 0.01 %
TEq A 139.974 140.039 0.05 %
TE3; S 144.152 144.222 0.05 %

second stripline in the right-hand side, respectively. It is noted
that the field H, is discontinuous at the infinitely thin strip
in general. That is, the fields H,(z, y = d*) on the upper
side of the strip may be different from those H,(z, y = d™)
on the lower side. Therefore, the fields H,(z, y = d*) and
H(z, y=d )for0 <z < Y are evaluated with the
forward and backward difference t%rmulas, respectively, via
the Neumann condition in the computation for the second
stripline. In addition, the second partial derivative 02 /9x* for
the point just to the right of the strip edge is substituted by
the three-point forward difference formula.

The calculated results are shown in Tables IV and V for the
first and second shielded striplines, respectively. The mode
designation is the same as that for the L-shaped and single-
ridged waveguides. Hence, the y-symmetric modes of the first
stripline are also counted although they are not shown in Table
IV. Also shown in the Tables are the results by the TRD
method and their differences with the present approach. It is
seen that these two results are in good agreement, especially
for the high-order modes. However, our results contain some
modes that did not appear in [7]. In what follows, we show
that at least parts of them are indeed physical modes.

In Table IV there are five modes not appearing in [7]: the
TEg, TE12, TE1s, TEa4, and TE,7 modes. It is interesting to
note that the cutoff frequencies of the y-antisymmetric TEg,
TE1s, TEo4, and TE97 modes in Table IV are very close to
those of the y-symmetric and degenerate (TE4, TEs), (TEss,
TEq7), (TEg2, TE23), and (TEz25, TEg¢) modes, respectively.
These four pair of dual y-symmetric modes are equivalent
to the (TE®2, TE20), (TE®, TE%"), (TE?4, TE*?), and (TE3*,
TE®%) modes, respectively, of the hollow square waveguide
having the same dimension as the shielded stripline without the
strip [22]. Hence, the cutoff frequencies of these dual modes
are 50, 100, 111.803, and 125 MHz, respectively. The reason

that the cutoff frequencies of these four y-antisymmetric
modes are close to the corresponding dual modes can be ex-
plained by observing the eigenfield distributions. For example,
the eigenfield H, distributions of the TEgz, TEz3, and TEz4
modes are shown in Figs. 5(a)—(c) for one quarter of the cross-
section of the first stripline. By the linear combinations of the
fields of Figs. 5(a) and 5(b) as

1 2 2
=(cos 2% cos ly +cos —x cos gy), (6a)

2 3 3 3
the resulting fields shown in Fig. 5(d) are very close to the
fields of the TEo4 mode except the regions near the strip edge.
The boundary conditions of the (TE?*, TE*?) modes and those
of the TEq4 mode are identical except that from z = 2.5 m
to z = 3 m (y = 0) where the Dirichlet condition is imposed
for the TEo4 mode. It is seen from Fig. 5(d) that the fields are
approaching to zero (the Dirichlet condition) from x = 2.5 m
to £ = 3 m (y = 0). Thus, the actual fields of the TEz4
mode are slightly perturbed from the fields of Fig. 5(d) in
the vicinity of the strip edge. Owing to the similarity in field
distributions, it can be expected that the cutoff frequency of
the TEs4 mode is close to that of the dual (TEs2, TE23) modes.
The same situations hold for the TEg, TE1g, and TEo7 modes
corresponding to the (TE®2, TE?), (TE®, TE*?), and (TE**,
TE®®) modes, respectively. The field H, distributions of the
TEg, TE1s, and TEy7 modes shown in Fig. 6(a)~(c) resemble
those of

1 by ™
- —2—(cos 3Y + cos ga:), (6b)
2
%(cos 2%3/ — cos —31.'17), (6¢)
and
1 2 5
i(sin %x cos -gy + sin -6233), (6d)

respectively. The eigenfield of the remaining TE;, mode not
appearing in [7] is shown in Fig. 6(d).

As to the second shielded stripline, there are ten modes
that do not appear in [7] compared to the present FD-SIC
results shown in Table V. If the electric field of a mode
in a rectangular waveguide is only in the y direction, the
presence of an infinitely thin conducting strip will have no
effect on that mode. Thus, the TE!®, TE?°, TE30, TE*, and
TE?® modes of the hollow rectangular waveguide having the
same dimension as the shielded stripline without the strip
are also modes of the shielded stripline. According to the
calculated cutoff frequencies and eigenfields, partly shown in
Fig. 7 for one half of the cross-section of the second stripline,
the TEy, TE4, TEg, TE12, and TE s modes, among the just-
mentioned 10 modes missing in [7], correspond to the above
five rectangular waveguide modes, respectively. The fields on
the lower and upper sides of the suip are discontinuous in
general. Thus, the location of the strip can be inferred from
the discontinuity if it exists in Fig. 7. However, the fields
on the strip are continuous for the just-mentioned five modes
having the analytic solutions. The numerical deviations from
the continuity of fields on the strip are more obvious in the
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TABLE V
COMPARISON OF THE CUTOFF FREQUENCIES (MHZ) FOR THE FIRST TWENTY-TwO DOMINANT TE
MODES OF THE RECTANGULAR COAXIAL WAVEGUIDE. (¢ = 6 MMb=1Md =3 M w =5 M)

Present Analytic Difference Difference
Mode Tyvpe TRD [7] FDM  Solution (FDM & TRD) (FDM & Analytic)
TE, S 19.980 19.887 — 0.47 % —
TE, A — 25.000 25 — 0.00 %
TE; A 38.611 38.530 — 0.21 % —
TE, S — 19.999 50 — 0.00 %
TEs S — 50.013 — — —
TFEe S 60.865 60.822 — 0.07 % —
TE, A 61.069 61.027 — 0.07 % —
TEs A — 74.996 5 — 0.01 %
TEq S 77.215 T7.151 — 0.08 % —
TE;q A 81.638 31.646 — 0.01 % —
TE A 93.925 93.956 — 0.03 % —
TE, S — 99.991 100 — 0.01 %
TE S — 100 113 — — —
T4 S 104.658 104.704 — 0.04 % —
TE:s A 107.364 107.822 - 0.04 % —
TEqs S — 111.861 — — —
TE, S 119.582 119.576 — 0.01 % —
TEs A -— 124.981 125 — 0.03 %
TErg A — 125.140 — — _
TFao A 129.521 129.583 — 0.05 % —
TEy A - 136.650 — — —
TE,, S 142.286 142.368 — 0.06 % —
TEs

Hz(x,y)
Hz(x,y)

TE»

©

(d)

Fig. 5. Field H. distributions of the (a) TEg=, (b) TEs3, and (c) TE2.4 modes
for one quarter of the cross-section of the rectangular coaxial waveguide con-
sidered in Table V. (d) f(x, y) = +(cos Zu cos 2ra cos Ty).

3 QT"'y—i— cos 5
TE; mode among these modes. The discontinuity errors are
maximum near the center of the strip for the TE, mode and
are about 1% there.

From the present FD-SIC results, the cutoff frequencies of
the TEs5, TE13, and TE19 modes are very close to those of
the TE,4. TE;2, and TE1g modes, respectively. Hence, it may

(c) (d)

Fig. 6. Field H. distributions of the (a) TEs, (b) TE;s, (c) TEsr, and (d)
TE12 modes for one quarter of the cross-section of the rectangular coaxial
waveguide considered in Table IV.

be difficult to find these nearly degenerate modes by the root-
searching method used in the TRD method [7] if these modes
can be solved by it. However, this situation does not cause any
troubles for the present approach. At last, the field distributions
of M for the remaining TE;¢ and TE2; modes not appearing
in [7] are shown in Fig. 7(e) and (h), respectively.
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Fig. 7. Field H. distributions of the (a) TE4, (b) TEs, (¢) TE12. (d) TE;13,
(e) TE16, (f) TE18, (g) TEj9, and (h) TEy; modes for one half of the
cross-section of the rectangular coaxial waveguide considered in Table V.
The discontinuity is the location of the strip.

IV. CONCLUSION

The cutoff wavenumbers or frequencies of the TE or TM
modes for the L-shaped, single-ridged, double-ridged, and
rectangular coaxial waveguides are investigated in this paper
by using the finite-difference method and the simultaneous
iteration in conjunction with the Chebyshev acceleration tech-
nique. Accurate results are obtained by utilizing dense finite-
difference grids and the efficient SIC algorithm for the sparse
matrix eigenvalue problems. Although the problems of the
metallic waveguides have been investigated for a long time, it
is found that results of some modes in the recent literature are

not satisfactory. Furthermore, it is found that a lot of modes
are missing in recent publications. Detailed discussions and
explanations have been provided to support our resuits.
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